Friday, 22 September 2017

Vorteile Of Moving Average Filter


Die 7 Fallstricke der gleitenden Durchschnitte Ein gleitender Durchschnitt ist der durchschnittliche Preis eines Wertpapiers über einen bestimmten Zeitraum. Analysten verwenden häufig gleitende Durchschnitte als analytisches Werkzeug, um es einfacher zu machen, Markttrends zu verfolgen, während sich die Wertpapiere auf - und abbewegen. Gleitende Mittelwerte können Trends festlegen und Impulse messen. Daher können sie verwendet werden, um anzugeben, wann ein Anleger ein bestimmtes Wertpapier kaufen oder verkaufen sollte. Investoren können auch gleitende Durchschnitte verwenden, um Unterstützungs - oder Widerstandspunkte zu identifizieren, um festzustellen, wann die Preise die Richtung ändern werden. Durch das Studium historischer Handelsbereiche werden Unterstützungs - und Widerstandspunkte etabliert, wo der Preis einer Sicherheit ihren Aufwärts - oder Abwärtstrend in der Vergangenheit umkehrte. Diese Punkte werden dann verwendet, um Entscheidungen zu treffen, zu kaufen oder zu verkaufen. Leider sind bewegte Durchschnitte nicht perfekte Werkzeuge für die Festlegung von Trends und sie präsentieren viele subtile, aber erhebliche Risiken für Investoren. Darüber hinaus gelten die gleitenden Durchschnitte nicht für alle Arten von Unternehmen und Branchen. Einige der wichtigsten Nachteile der gleitenden Mittelwerte sind: 1. Gleitende Mittelwerte ziehen Trends aus vergangenen Informationen. Sie berücksichtigen nicht die Änderungen, die eine zukünftige Performance der Sicherheit beeinflussen können, wie neue Wettbewerber, eine höhere oder niedrigere Nachfrage nach Produkten in der Branche und Veränderungen in der Managementstruktur des Unternehmens. 2. Im Idealfall wird ein gleitender Durchschnitt eine konsistente Änderung des Preises eines Wertpapiers im Laufe der Zeit zeigen. Leider bewegte Durchschnitte nicht für alle Firmen arbeiten, besonders für diejenigen in sehr volatilen Industrien oder diejenigen, die stark durch aktuelle Ereignisse beeinflusst werden. Dies gilt insbesondere für die Ölindustrie und die hochspekulativen Industrien im Allgemeinen. 3. Gleitende Mittelwerte können über einen Zeitraum verteilt werden. Dies kann jedoch problematisch sein, da sich der allgemeine Trend je nach eingestelltem Zeitraum erheblich ändern kann. Kürzere Zeitrahmen haben mehr Volatilität, während längere Zeitrahmen weniger Volatilität aufweisen, aber keine neuen Marktveränderungen berücksichtigen. Investoren müssen vorsichtig sein, welchen Zeitrahmen sie wählen, um sicherzustellen, dass der Trend klar und relevant ist. 4. Eine laufende Debatte ist, ob in den letzten Tagen des Berichtszeitraums mehr Wert gelegt werden sollte oder nicht. Viele glauben, dass die jüngsten Daten besser die Richtung widerspiegeln, in der sich die Sicherheit bewegt, während andere das Gefühl, dass einige Tage mehr Gewicht als andere, falsch verzerrt den Trend. Anleger, die unterschiedliche Methoden zur Berechnung der Durchschnittswerte verwenden, können ganz andere Trends ziehen. (Erfahren Sie mehr in Simple vs Exponential Moving Averages.) 5. Viele Investoren argumentieren, dass die technische Analyse eine sinnlose Art ist, das Marktverhalten vorherzusagen. Sie sagen, der Markt habe kein Gedächtnis und die Vergangenheit ist kein Indikator für die Zukunft. Darüber hinaus gibt es erhebliche Forschung, um dies zu unterstützen. Zum Beispiel führte Roy Nersesian eine Studie mit fünf verschiedenen Strategien mit gleitenden Durchschnitten. Die Erfolgsquote der einzelnen Strategien variierte zwischen 37 und 66. Diese Forschung deutet darauf hin, dass bewegte Durchschnitte nur Ergebnisse Ergebnisse über die Hälfte der Zeit, die mit ihnen einen riskanten Vorschlag für eine wirksame Timing der Börse könnte. 6. Wertpapiere weisen häufig ein zyklisches Verhaltensmuster auf. Dies gilt auch für Versorgungsunternehmen, die im laufenden Jahr eine stabile Nachfrage nach ihrem Produkt aufweisen, aber starke saisonale Veränderungen erfahren. Obwohl gleitende Durchschnitte können dazu beitragen, glätten diese Trends, können sie auch die Tatsache, dass die Sicherheit tendiert in einem oszillierenden Muster zu verbergen. (Weitere Informationen finden Sie unter Halten Sie ein Auge auf Momentum.) 7. Der Zweck jeder Tendenz ist vorherzusagen, wo der Preis eines Wertpapiers in der Zukunft sein wird. Wenn eine Sicherheit ist nicht in beide Richtungen Trend, es bietet keine Möglichkeit, von entweder Kauf oder Leerverkäufe profitieren. Der einzige Weg, einen Investor in der Lage zu profitieren wäre, um eine anspruchsvolle, Optionen-basierte Strategie, die auf den Preis verbleibenden stetig zu implementieren. Die untere Linie Die gleitenden Durchschnitte wurden von vielen als ein wertvolles analytisches Werkzeug angesehen, aber für jedes Werkzeug, das wirksam ist, müssen Sie zuerst seine Funktion verstehen, wann man es benutzt und wann es nicht benutzt wird. Die hier angesprochenen Risiken deuten darauf hin, dass es sich bei den gleitenden Durchschnittswerten nicht um ein wirksames Instrument wie etwa bei der Verwendung mit volatilen Wertpapieren handelte und dass sie bestimmte wichtige statistische Informationen wie zyklische Muster übersehen können. Es ist auch fraglich, wie effektive gleitende Durchschnitte für eine genaue Angabe der Preisentwicklung sind. Angesichts der Nachteile, gleitende Mittelwerte kann ein Werkzeug am besten in Verbindung mit anderen verwendet werden. Am Ende wird die persönliche Erfahrung der ultimative Indikator dafür, wie effektiv sie wirklich für Ihr Portfolio sind. (Weitere Informationen finden Sie unter Do Adaptive Moving Averages Lead to Bessere Ergebnisse) Ein Reichtum Psychologe ist ein psychiatrischer Arzt, spezialisiert sich auf Fragen, die speziell auf reiche Personen. Geldwäsche ist der Prozess der Schaffung des Aussehens, dass große Mengen an Geld aus schweren Verbrechen, wie erhalten. Rechnungslegungsmethoden, die sich auf Steuern und nicht auf das Auftreten von öffentlichen Abschlüssen konzentrieren. Steuerberatung wird geregelt. Der Boomer-Effekt bezieht sich auf den Einfluss, den der zwischen 1946 und 1964 geborene Generationscluster auf den meisten Märkten hat. Ein Anstieg der Preise für Aktien, die oft in der Woche zwischen Weihnachten und Neujahr039s Day auftritt. Es gibt zahlreiche Erklärungen. Ein Begriff verwendet von John Maynard Keynes verwendet in einem seiner Wirtschaftsbücher. In seiner Publikation 1936, die Allgemeine Theorie der Beschäftigung. Der Wissenschaftler und Ingenieure Führer zur digitalen Signalverarbeitung Durch Steven W. Smith, Ph. D. Kapitel 15: Verschieben von Durchschnittsfiltern Verwandte des Moving Average Filters In einer perfekten Welt müssten Filter-Designer nur mit Zeitdomänen - oder frequenzbereichskodierten Informationen umgehen, aber niemals eine Mischung aus beiden im selben Signal. Leider gibt es einige Anwendungen, bei denen beide Domains gleichzeitig wichtig sind. Zum Beispiel, Fernsehsignale fallen in diese fiese Kategorie. Die Videoinformation wird im Zeitbereich kodiert, dh die Form der Wellenform entspricht den Mustern der Helligkeit in dem Bild. Während der Übertragung wird das Videosignal jedoch entsprechend seiner Frequenzzusammensetzung, wie etwa seiner Gesamtbandbreite, behandelt, wie die Trägerwellen für die Tonampelfarbe addiert werden, die Eliminierungsampere-Wiederherstellung der Gleichspannungskomponente usw. Als ein anderes Beispiel ist eine elektromagnetische Interferenz Wird am besten im Frequenzbereich verstanden, auch wenn die Signalinformation im Zeitbereich codiert wird. Zum Beispiel könnte die Temperaturüberwachung in einem wissenschaftlichen Experiment mit 60 Hertz von den Stromleitungen, 30 kHz von einem Schaltnetzteil oder 1320 kHz von einer lokalen AM-Funkstation verunreinigt sein. Verwandte des gleitenden Durchschnittsfilters weisen eine bessere Frequenzbereichsleistung auf und können in diesen gemischten Domänenanwendungen nützlich sein. Multiple-Pass-Gleit-Durchschnittsfilter beinhalten, daß das Eingangssignal zweimal oder mehrmals durch einen gleitenden Durchschnittsfilter geleitet wird. Abbildung 15.3a zeigt den Gesamtfilterkern, der aus einem, zwei und vier Durchgängen resultiert. Zwei Durchläufe entsprechen der Verwendung eines dreieckigen Filterkerns (eines rechteckigen Filterkerns, der mit sich selbst konstruiert wurde). Nach vier oder mehr Durchgängen sieht der äquivalente Filterkernel wie ein Gaußscher (Rückruf des zentralen Grenzwertsatzes) aus. Wie in (b) gezeigt, erzeugen mehrere Durchgänge eine s-förmige Sprungantwort im Vergleich zu der geraden Linie des einzigen Durchgangs. Die Frequenzantworten in (c) und (d) sind durch Gl. 15-2 multipliziert mit sich für jeden Durchlauf. Das heißt, jede Zeitbereichs-Faltung führt zu einer Multiplikation der Frequenzspektren. Abbildung 15-4 zeigt den Frequenzgang zweier anderer Verwandter des gleitenden Durchschnittsfilters. Wenn ein reiner Gaußscher als Filterkern verwendet wird, ist der Frequenzgang auch ein Gaußscher, wie in Kapitel 11 erläutert. Der Gaußsche ist wichtig, weil er die Impulsantwort vieler natürlicher und künstlicher Systeme ist. Beispielsweise wird ein kurzer Lichtimpuls, der in eine lange faseroptische Übertragungsleitung eintritt, als ein Gaußscher Impuls aufgrund der unterschiedlichen Pfade, die von den Photonen innerhalb der Faser aufgenommen werden, austreten. Der Gaußsche Filterkernel wird auch weitgehend in der Bildverarbeitung verwendet, da er einzigartige Eigenschaften hat, die schnelle zweidimensionale Windungen ermöglichen (siehe Kapitel 24). Der zweite Frequenzgang in Fig. 15-4 entspricht der Verwendung eines Blackman-Fensters als Filterkernel. (Der Begriff Fenster hat hier keine Bedeutung, er ist einfach Teil des akzeptierten Namens dieser Kurve). Die genaue Form des Blackman-Fensters ist in Kapitel 16 gegeben (Gleichung 16-2, Abb. 16-2), sie sieht jedoch sehr ähnlich wie ein Gaußscher. Wie sind diese Verwandten des gleitenden Durchschnittsfilters besser als der gleitende Mittelfilter selbst? Drei Wege: Erstens, und am wichtigsten, haben diese Filter eine bessere Stopbanddämpfung als das gleitende Mittelfilter. Zweitens verjüngen sich die Filterkerne zu einer kleineren Amplitude nahe den Enden. Es sei daran erinnert, dass jeder Punkt in dem Ausgangssignal eine gewichtete Summe einer Gruppe von Abtastungen von dem Eingang ist. Wenn sich der Filterkern verjüngt, werden die Abtastwerte im Eingangssignal, die weiter entfernt sind, weniger Gewicht als die in der Nähe befindlichen. Drittens sind die Schrittantworten glatte Kurven, und nicht die abrupte gerade Linie des gleitenden Durchschnitts. Diese letzten beiden sind in der Regel von begrenztem Nutzen, obwohl Sie Anwendungen finden könnten, wo sie echte Vorteile sind. Der gleitende Durchschnittsfilter und seine Verwandten sind alle ungefähr gleich, wenn man zufälliges Rauschen reduziert, während eine scharfe Sprungantwort beibehalten wird. Die Mehrdeutigkeit liegt darin, wie die Anstiegszeit der Sprungantwort gemessen wird. Wenn die Anstiegszeit von 0 bis 100 des Schritts gemessen wird, ist der gleitende Durchschnittsfilter das beste, was Sie tun können, wie zuvor gezeigt. Im Vergleich dazu misst die Messung der Risse von 10 bis 90 das Blackman-Fenster besser als das gleitende Mittelfilter. Der Punkt ist, das ist nur theoretische Squabbeln betrachten diese Filter gleich in diesem Parameter. Der größte Unterschied in diesen Filtern ist die Ausführungsgeschwindigkeit. Mit einem rekursiven Algorithmus (beschrieben als nächstes), wird der gleitende Durchschnitt Filter wie Blitz in Ihrem Computer laufen. In der Tat ist es die schnellste digitale Filter zur Verfügung. Mehrere Durchgänge des gleitenden Durchschnitts werden entsprechend langsamer, aber immer noch sehr schnell sein. Im Vergleich dazu sind die Gauß - und die Blackman-Filter quälend langsam, weil sie die Faltung verwenden müssen. Denken Sie einen Faktor von zehnmal die Anzahl der Punkte im Filterkernel (basierend auf der Multiplikation, die etwa zehnmal langsamer als die Addition ist). Beispielsweise erwarten Sie, dass ein 100-Punkt-Gaussian 1000-mal langsamer als ein gleitender Durchschnitt mit Rekursion ist.

No comments:

Post a Comment